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Abstract. The semi-classical laser equations are analysed outside the rotating-wave approxi- 
mation and a new exact steady-state solution for stationary but inhomogeneously broadened 
atoms is obtained. Results applicable to any solid-state laser are derived and these are also 
relevant to a gas laser working near threshold or at very high intensities. The resonance 
frequency exhibits a Bloch-Siegert shift. New results in the theory of frequency pulling and 
pushing are obtained. 

1. Introduction 

Several attempts have been made to improve upon the semi-classical theory of a laser 
as first presented by Lamb (1964). Uehara and Shimoda (1965) carried the perturbation 
expansion of the polarization as a power series in the field amplitude to fifth order 
whilst Culshaw (1967) extended the calculation to even higher orders. However, series 
expansions beyond third order are rather cumbersome and contain little physical 
information. Moreover the validity of such a series is limited by the requirement that 
the intensity remains so small as to make the dimensionless parameter I, 

much less than unity. Here p is the dipole matrix element between the two states of 
interest, go is the field amplitude and the times Tl and T, are respectively measures of 
the rate at which the excess population decays to the time independent value established 
by a pumping mechanism competing with damping and the rate at which phase cor- 
relation between atoms is destroyed. Holt (1970) has estimated that the perturbation 
series starts breaking down when I exceeds 0.05. Typically for ruby or neodymium 
Tl - cgs units, the perturba- 
tion series expansion is valid only for intensities 8'; < lo-,. Unfortunately this 
inequality is not satisfied for intensities at which these lasers are normally operated. 

For a single-mode laser the theory has been extended to higher intensities (Green- 
stein 1968, Stenholm and Lamb 1969, Stenholm 1970, 1971, Holt 1970; an exhaustive 
list of references appears in Stenholm 1971). However, the calculation generally becomes 
so involved that the search for an analytical solution has to be abandoned except for 
t Statz (1967) quotes the following values for TI and T2: 

s and T2 - lo-" st however, and since p 2  - 

TI T2 
Ruby 5 x 10-3 s 1/24 x 10-11 s 
Nd glass 3 x s 1/2.4 x lo-" s 

1934 
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special cases. The simplest case to treat is undoubtedly that of stationary atoms. 
Lamb (1964) obtained an exact analytical solution for this case and pointed out that 
the effect of atomic motion in a gas cannot be properly taken into account by simply 
assuming that the only effect of atomic motion is to Doppler shift the atomic resonance 
frequency. 

All calculations to date have used the rotating-wave approximation which drops 
all rapidly oscillating terms. The purpose of this paper is to investigate the role of this 
approximation in laser theory. One intuitively expects that the retention of the ‘counter- 
rotating terms’ in the theory will result in a shift of the resonance (ie Bloch-Siegert shift) 
and may have significance in the theory of frequency pulling and pushing as well. 
These expectations are borne out by a steady-state solution valid for stationary atoms 
which we report in this paper. However, the Bloch-Siegert shift for an atom in a cavity 
turns out to be only three quarters of its value for a free atom. We also obtain a general- 
ized expression for frequency pulling and find, in particular, that at high intensities the 
oscillator frequency coincides, for all practical purposes, with the cavity resonance 
frequency. Throughout we merely assume that the atomic resonance frequency w, 
is inhomogeneously broadened with the help of a distribution function g(w,). This 
procedure should be adequate for a solid-state laser. The results should be applicable 
to the gas laser near the threshold conditions (Lamb 1964) and they should also apply 
at high intensities where power broadening makes the effect of atomic motion negligible 
(Stenholm 1970). 

In Q 2 which follows we present the semi-classical laser equations and their steady- 
state solution. In order to achieve comparison with previous work the equations we 
use are essentially those of Lamb although we adopt the Bloch equation form. A 
generalized version of these equations appears in Bullough et a1 (1974). In Q 3 we use 
the solution to discuss frequency pulling and pushing in the course of which we make a 
direct but brief comparison with standard results in refractive index theory. These 
results are also relevant to the theory of partial mode locking (Picard and Schweitzer 
1969) and pulse compression (Treacy 1969). 

2. Equations of motion 

Our formalism is that of Lamb (1964) except that we shall use the Bloch vector 
r = (rl , r 2 ,  r 3 )  instead of individual elements of the atomic density matrix. The com- 
ponents r ,  and r3  of r have immediate physical significance: p r ,  is the atomic dipole, 
r3  is the inversion. We shall here introduce two independent empirical time constants 
T2 and T, to describe their decay. 

We assume the electric field to be a standing wave of the form 

where U ( z )  = sin kz ;  k = i 2c - l ;  and R is a cavity eigenfrequency. We define P(t )  to be 
the space Fourier transform of the polarization P(z, t )  

P(t )  = - P(z,  t )  sin kz dz. : LL 
The cavity is one dimensional, of length L. 
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We assume that a steady-state purely harmonic solution exists, ie 

A(t )  = 80 C O S ( U ~  + 4) 
P(t )  = C cos(ut + 4)+ S sin(ut + 4). 

For a single mode we can choose 4 E 0. The driven Maxwell wave equation 

411a aE 1 a2E 4n a2p 
c2 at c 2  at2 c2 at2 

V 2 E d -  _ _ _  - = - - 

where the ‘conductivity’ a accounts for the losses from the cavity, reduces to 

(u2-Q2)&o = -47cv2c 

; u Q - ’ & O  = - 2 7 1 ~ s  

( 2 . 3 ~ )  

(2.3b) 

(2.4) 

(2.5a) 

(2.5b) 

where Q is the quality factor of the cavity. 
The medium is assumed to consist of two-level atoms: the upper states are Is) of 

energy i h o , ;  the lower states are 10) with energy -@U,. The components of the Bloch 
vector are defined by 

rl  = P S O + P O S  

r2 = i(PS0 - Po,) 

r3 = P s s  - Po0 ; 

the pzp are elements of the density matrix of a ‘typical atom’ of frequency os : r l  , r2 and 
r3 depend on z, t and U,. The polarization of the medium is 

The function g(o,)  is the normalized frequency distribution describing the inhomo- 
geneous broadening: n is the total number density of atoms of whatever frequency 
and state of excitation. 

With empirically added damping the Bloch vector satisfies 

r l  - - 0 , r 2  -- ar1 
at T2 
_ -  

r2 - w,rl - wr3 - - ar2 
at T2 
_ -  

7.3 - r3(z, to) _ -  - wr2-  87.3 
at TI 

W ( Z ,  t )  = - 2ph- ‘E( z ,  t ) .  

where 

( 2 . 8 ~ )  

(2.8b) 

( 2 . 8 ~ )  

(2.8d) 

Here the quantity nr3(z,to) plays the same role as the ‘excitation density’ in Lamb’s 
formalism and conceals a rate As (say) of pumping of atoms into upper states Is> and 
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a rate A. of removal to lower states. The Bloch equations (2.8) are equivalent to the 
set of equations 

a2r l  2 a r ,  
at2 T, at  
-+- -+w,2rl = w,wr3 

r l  - - w,r2 -- _ -  ar1 
at  T2 

(2 .9~)  

(2.9b) 

(2 .9~)  

We want to find a steady-state solution of the coupled equations (2.5), (2.7) and (2.9). 
We assume a solution for r l  in the form 

rl  = Ca(z, 0,) cos ut+ Sa(z, U,) sin ut. (2.10) 

The field E(z, t )  is as assumed in (2.1). The subscript a refers to the atomic quantities 
depending on z and labelled by frequencies w, . The corresponding macroscopic 
quantities are 

C = :np JoL J: Ca(z, w,)g(w,) sin kz dz dw, 

and similarly for S .  The assumptions (2.1) and (2.10) in (2.9) mean that 

d2r, 2 d r ,  z+- -+w,2rl at T, at 

= - 2w0w, cos ut U(z)r,(z, t o )  + wow; 

(2.1 1) 

(2.12) 

Here wo is the ‘Rabi frequency’: wo = pg0,/A. We will retain only those terms on the 
right-hand side which can produce resonance with the field although it is easy to see 
how to extend the theory to include steady-state harmonics: this is not equivalent to 
the rotating-wave approximation which has not been made. We can also consistently 
neglect CJT compared with us,. The result is 

a2rl  2 ar ,  
a t 2  T, at 
-+- -+wfr 

= -2w0 U(z)r3(z, to)w,+ woTluSa(z, o,)U2(z) [ 

(2.13) 
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(in which V(z) 3 sin kz). We multiply both sides by (2/L) sin kz and integrate on z. 
We denote 

2 5,’ rl(z, t ; U,) sin kz dz rf ; 

and assume 

and 

(2.14) 

(2.15) 

(2.16) 

Assumption (2.16) is equivalent to the assumption of negligible spatial variations in 
the steady-state inversion density and (2.15) is consistent with the assumption of 
oscillations in a single mode. We now find 

a2rf 2 ar, -+- --+o:r, 
at2 T, at 

-iw:Sa. sin ut (2.17) 

with 

sin kz dz (2.18a) 

(2.18b) 

The quantity n?3(to) is the average population inversion density before the start of 
oscillations : we denote it by Ro. 

We can now substitute for rf in (2.17) from (2.10) and compare coefficients of sin ut 
and cos ut. We have finally 

- 4~7’; ‘wo~,F3( to)  sa. = 
(U,” -U’ +tw; ) *  + 4u’Ti2 + 3v2w;T1 T;’ 

and 

- ~ U , W ~ F ~ ( ~ ~ ) ( O . I , ” - U ~  +$w;)  ca. = 
(at - u 2  + $ W E ) ,  + 4 ~ , T 5 ~  + 3vZwiT,T; “ 

(2.19a) 

(2.19b) 

The structure and, to some extent, the form of the results (2.19) compares with the 
results, equations (52H56) of Stenholm and Lamb (1969). If one replaces sin kz by its 
average value of 4 then their expressions for Sat and Ca, read in the present notation 

(2.204 
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and 

ca. = (o,-u)T2Sa.. (2.20b) 

Equations (2.19) differ from (2.20) in two important respects. First: the resonance is 
shifted by an amount 3wi/16u to first order in wi/u2. This is immediately recognizable 
as the leading term in the power series development of the Bloch-Siegert shift (Ahmad 
and Bullough 1974). Notice that the cavity has reduced this shift by 25%. Also this 
shift does not depend on Tl or T2. This conclusion is supported by recent experiments 
of Arimondo and Moruzzi (1973). Second: the expressions (2.19) resonate not only at 
U = o, but also at u = - os. Equations (2.19) will go over into (2.20) provided we replace 
w i  in the last term of the denominator by $wi, ignore the Bloch-Siegert shift and set 
w,+u = 20, = 2u. We shall show below that the ‘negative frequency terms’ play an 
important role in the theory. 

The procedure used in this section for solving the Bloch equations is formally 
equivalent to the one adopted by Arimondo (1968). He expanded r l ,  r2 and r3 in Fourier 
series, substituted the series in the Bloch equations (with TI = T2 however) and solved 
the resulting simultaneous equations, six in number, for the coefficients of cos ut and 
sin ut. However, the present method appears to be more suitable for the problem at hand. 

3. Discussion of the steady-state solution 

The spread in values of U, is typically of the order of 10l2 Hz. Therefore we can safely 
assume 

1 0 : - u 2 ~  << V~T,T,?  (3.1) 

Now if the field is weak enough 

(3.2) 

Condition (3.2) is precisely the condition I << 1 however, so that 8; << 
the results apply only near threshold. If (3.2) holds we have 

cgs units and 

These are the real and imaginary parts of the atomic polarizability 

(3.3a) 

(3.3b) 

stimulated linearly by the field go cos ut .  
The many-body problem in the linear approximation equivalent to (3.4) has been 

largely solved for two cases: these are the rigid crystal and the ensemble averaged 
‘molecular fluid’ (cf, eg, Obada and Bullough 1969, Hopfield 1958, Bullough and 
Thompson 1970, Bullough er a1 1968, Bullough and Hynne 1968). It is assumed there 
that Fj(t0) = - 1 (the attenuator) but the calculation is unchanged for other values of 
r3(z,ro) providing this does not, in fact, vary with z. The key results in amorphous 
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systems are that a(u) should be replaced by the Lorentz and local-field corrected result 

and that in consequence the wavenumber k of the mode is not 0,c-l  on resonance; 
J(u)  is a complex-valued function of U so that there is a change in the damping, a shift 
of the resonance, and a possible change in the character of the singularities of aL(u) at 
the zeros of the denominator. Essentially the same features apply to crystals: the 
Lorentz field correction can apparently be inadequate even in cubic crystals just in the 
resonance region (Bullough and Thompson 1970). 

We shall here first pursue the argument with (3.4) rather than (3.5) keeping the 
empirical inhomogeneous broadening function g ( o , )  as a description of the microscopic 
broadening mechanisms some of which are otherwise described by J(u).  We prove 
0 = ck # W ,  ‘on resonance’ (where U = wo) solely because (3.4) contains negative 
frequency terms resonating at U - -cos: the relative shift is small but potentially 
significant in laser theory. 

If the width Amo of g ( o , )  is much greater than T ;  (as is usually the case) we can 
replace g ( o , )  by its value at the line centre, g ( o o )  and integrate to get 

Using this in (2.56) we find the threshold condition 

Q - ’  = 4n2p2k-’R og(w0). (3.6) 

The comparable result for C when substituted in ( 2 . 5 ~ )  yields 

after making use of (3.6). The result (3.7) should be better approximated by restricting 
the contribution to the integral over os to a range o o - A w o  < os < o o + A o o  with 
A o o  the linewidth. Replacement of the limits for o, in (3.7) to the ends of this range 
yields 

0 2 - 0 2  = - -In( (3.8) 
1 u2 

2n Q 
[U; - u2 + 
[w: - U’ + ( A w ~ ) ’  - 2(A00)00]~ + (4o2/T2) ‘ 

+ ~ ( A w O ) W O ] ~  + ( 4 ~  / 2) 

For large detuning we can neglect ( A w , ) ~  in (3.8) and obtain 

(3.9) 

We use u)o + U 2: 2u which is equivalent to the rotating-wave approximation. Equation 
(3.9) then yields to first order in (coo - u)/Aw0 the familiar form (Lamb 1964, equation (67)) 

U-R U 

W O  - U z ( A w ~ ) Q ’  
= (3.10) 

However, this result uses 

10; - u’I >> (3.1 l a )  
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(large detuning) whereas, close to resonance 

lo;-v21 << (Am,)' 

so that 

or 

Am0 U-R z - 
2nQ ' 

1941 

(3.11b) 

(3.12) 

With Q of the order of 10' and the inhomogeneous linewidth, Am,, exceeding 10l2 Hz, 
as for example, for a neodymium-glass laser, the frequency difference U - R may approach 
10' Hz. This frequency pulling differs from the result of the rotating-wave approxi- 
mation : in this approximation (3.10) is supposed to  apply on resonance also and c = oo 
implies U = R as well. Since at high intensities U - R  is very small (see equation (3.19) 
below) it follows that the pulsed output from a neodymium-glass laser will be carrier- 
frequency modulated. This modulation, or chirp, as it is generally called, is of the order 
mentioned above and is essential for the pulse compression experiments (Treacy 1969). 
It is also clear from (3.12) that the chirp for most other lasers is negligibly small. 

The physical significance of (3.12) becomes clear by noting that for sufficiently 
small (AW,)~/O; equation (3.8) reduces to  (3.10) even when (3.1 lb) is satisfied provided 
we replace oo by ob where 

(3.13) 

This suggests that the oscillator frequency is pulled towards a new line centre ob. 
The shift for a gas laser, He-Ne for example (Bo, lo9 Hz) will be only about a 
thousand hertz. We must point out that (3.13) does not imply that ob will be the most 
favoured frequency, ie one which experiences highest gain. 

3.1. Partial mode locking 

Most theories of self-locking of modes in a multi-mode laser assume that all adjacent 
modes are equally spaced (cf, eg, Statz et a1 1967). According to Statz (19671 this situation 
is unlikely to prevail in a material with a large inhomogeneously broadened line as 
for example in a neodymium-glass laser and locking should not occur. This is contra- 
dicted by experiments where ultra-short pulses have been observed in the output of 
practically any solid-state laser (see, eg, Bass and Woodward 1968). This discrepancy 
may be qualitatively understood by noting that in a material with a large inhomogeneous 
linewidth. Ato,, inequality (3.11b) may be satisfied for a large number of modes. Fre- 
quencies of all such modes will be equally spaced since the right-hand side of (3.12) 
does not depend on the detuning U,, - c. These modes will be available for self-locking. 
However, there may also be modes oscillating at frequencies far removed from the line 
centre so that (3.1 la) is satisfied. In this case (3.9) applies and the oscillation frequencies 
do depend on the detuning. Statz' analysis may apply in this region and these modes 
will resist being locked. This argument emphasizes the importance of the inhomogeneous 
linewidth, Am,, to the theory of partial-mode locking (Harrach 1968, Picard and 
Schweitzer 1969). 
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3.2. High-intensity limit 

We now examine the extreme case when the intensity is so high that only the last term 
in the denominator of (2.194 is significant. This implies 

I >> (T2AwO)' (3.14) 

where I is defined by (1.1). Physically condition (3.14) means that the atomic line is 
power broadened to such an extent that it dominates the inhomogeneous broadening. 
This condition is unlikely to be satisfied for gas lasers but may be met for high power 
solid-state lasers. In this case 

(3.15) 

From this we get 

where wo is the centre frequency of the distribution function g(w,), assumed to be even 
about oo . Using (2.5) we get 

(3.16) 

Thus the intensity is proportional to the time-independent average population inversion 
density Ro in agreement with the rate equation approach. 

In order to calculate the oscillator frequency U we use the fact that if we drop a term 
&w; in the denominators of equations (2.19) which is always permissible since 
w; << U' Tl T; ', we can write C, in the form 

-$wj$T; 'Sa,]. (3.17) 

The result (3.15) for Sa, at large intensities allows us to substitute in (3.17) to get 

so that the in-phase component of polarization is 

From (2.5), (3.16) and (3.18) we obtain 

(3.18) 

(3.19) 

where wo is, as before, p ~ 9 ~ h - ' .  Thus the oscillator frequency is separated from the 
cavity resonance frequency by an amount proportional to the intensity. However for 
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T, - lo-' ' s, Q - lo7 and g(o,) - (do,)-' - we have 

2: 10-19~; 

and U will coincide with SZ for all practical purposes : the frequency pulling is cancelled 
by 'frequency pushing' effects. 
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